BAMBOO SCIENCE
&
CULTURE
The Journal of the American Bamboo Society

is published by the
American Bamboo Society
Copyright 2009
ISSN 0197–3789

Bamboo Science and Culture: The Journal of the American Bamboo Society
is the continuation of The Journal of the American Bamboo Society

President of the Society
C. William King

Vice President
Steve Stamper

Treasurer
Sue Turtle

Secretary
David King

Membership
Michael Bartholomew

Board of Directors
Brad Salmon
James Clever
Lynn Clark
Durnford Dart
Steve Stamper
Lennart Lundstrom
Daniel Fox
Mike Bartholomew
David King
Ian Connor
Bill Hollenback
C. William King
Cliff Sussman
Steve Muzos
James Bonner

Membership Information

Membership in the American Bamboo Society and one ABS chapter is for the calendar year and includes a subscription to the bimonthly Newsletter and annual Journal.

See http://www.bamboo.org for current rates or contact
Michael Bartholomew, 750 Krumkill Rd. Albany NY 12203-5976.

Cover: Chusquea pinifolia and C. heterophylla growing at campo de altitude habitat near Pedra do Sino (Bell Rock), at an elevation of ca. 2100 m in Organ Mts. National Park (Brazil).
Occurrence of *Aulonemia deflexa* (Poaceae: Bambusoideae) in Brazil

Pedro L. Viana

Universidade Federal de Minas Gerais, Programa de Pós-graduação em Biologia Vegetal, Departamento de Botânica. Instituto de Ciências Biológicas. 30123-970, Belo Horizonte, Minas Gerais, Brasil.

email: vianapl@yahoo.com.br

Nara F. O. Mota

Universidade Federal de Minas Gerais, Programa de Pós-graduação em Biologia Vegetal, Departamento de Botânica. Instituto de Ciências Biológicas. 30123-970, Belo Horizonte, Minas Gerais, Brasil.

email: bhznara@yahoo.com.br

and

Tarciso S. Filgueiras

Reserva Ecológica do IBGE. 70312-970, Brasília, Distrito Federal, Brasil

email: tfilg@uol.com

ABSTRACT

Aulonemia Goudot is a genus of woody Neotropical bamboo comprising 36 described species. Fifteen of these are considered endemic in Brazil and almost all of them occur in the Atlantic Forest biome. As part of a taxonomic study of the Brazilian species of *Aulonemia*, an expedition to the Brazilian part of Roraima Tepui was carried out in order to investigate the occurrence of *A. deflexa* in Brazilian territory. A Global Positioning System was used to record the exact location of the populations. Several individuals of *A. deflexa* were located in Brazil. Some of them were sampled, photographed and georeferenced. This record of *A. deflexa* is the first citation of the species in Brazil and it illustrates the poor state of botanical knowledge in the northern region of the country.

RESUMO

Aulonemia Goudot é um gênero de bambus lignificados que compreende 36 espécies descritas. Desse total, 15 são consideradas endêmicas do Brasil, sendo que a maioria ocorre no bioma Mata Atlântica. Como parte do estudo das espécies brasileiras de *Aulonemia*, uma expedição ao Monte Roraima foi conduzida a fim de verificar a ocorrência de *Aulonemia deflexa* em território brasileiro. Diversos indivíduos de *A. deflexa* foram localizados no Brasil, alguns dos quais coletados, fotografados e georreferenciados. Este registro de *A. deflexa* é a primeira citação para o Brasil e reflete o pouco conhecimento da flora na região norte do País.

INTRODUCTION

Aulonemia Goudot is a genus of woody neotropical bamboo comprising 36 described species (Judziewicz et al. 2000) and many yet to be described, raising the total diversity in the genus to an estimated 60 species (Clark et al. 2007). The genus is distributed from Mexico to southern Brazil and almost all the species are found on wet and high altitude sites, such as the Andean páramos, the Guayana Shield and eastern and southern Brazil, in the Atlantic Forest (Judziewicz et al. 1999).

As far as known, the species of *Aulonemia* found in Brazil are considered endemic (Filgueiras and Santos-Gonçalves 2004), especially in the Atlantic Forest. The only species that exceed the limits of the Atlantic Forest
biome are A. aristulata (Doell) McClure, which also occurs in gallery forest in the Cerrado biome in the states of Goiás and Minas Gerais, and A. effusa (Hack.) McClure, a distinctive species found in rocky grasslands of Minas Gerais and Bahia states.

The Guayana Shield region is an important center of diversity for the genus and contains at least five endemic species of Aulonemia (Judziewicz et al. 1999). None of these have previously been recorded in Brazil.

Mount Roraima, an integral part of the Guayana Shield, is a remarkable flat-topped mass of quartzite (or “Tepui”, in the local indigenous language) located at the tri-border area between Brazil, Venezuela and Guyana. The altitudes in the summit range from c. 2500 m to 2734 m high. Eighty five per cent (85%) of the area belongs to Venezuela, 10% to Guayana and only 5% to Brazil. The different types of vegetation found are riverine forests, crevice and ledge forests, dry open savannas, bogs and lithobiomes (Michelangeli 2000).

Since Thurns and Perkins’ first excursion to Mount Roraima in 1884 (Perkins 1885), several botanists have visited this tepui, attracted by its peculiar and specialized flora (e.g. Tate 1932, 1930; Maguire 1970; Steyermark 1979). Several new species, most of them endemic, were described and almost all of them were collected in Venezuelan or Guyanan territory.

The single species of Aulonemia recorded on Mount Roraima was first collected in Guyanan territory in 1898 by McConnell and Quelch, three years later it was described by N. E. Brown as Arundinaria deflexa, based on McConnell’s specimens. According to Judziewicz (2004), this species also occurs in Venezuelan Ilú-Tepui and Ptari-Tepui.

MATERIAL AND METHODS

As part of a taxonomic study of the Brazilian species of Aulonemia, an expedition to the Brazilian part of the tepui was carried out in January 2008, in order to investigate the occurrence of A. deflexa in Brazilian territory. A Global Positioning System (GPS) was used to record the exact location of the populations, shown in Fig. 1. The collected specimens are deposited at the herbarium BHCB, of the Universidade Federal de Minas Gerais, Brazil and duplicates were sent to the herbaria IBGE, and ISC (acronyms according to Holmgren & Holmgren 1998).

![Fig. 1. Map representing the area of occurrence of Aulonemia deflexa (*) in Brazilian territory.](image-url)
RESULTS AND DISCUSSION

After a two-day search for *Aulonemia* in Brazilian territory, several individuals were seen. They were located along a stream (5°13’23” N, 60°43’49” W to 5°12’30” N, 60°43’41” W) growing on open bogs (Fig. 2) and extending into the adjacent riverine and crevice forests (Fig. 3).

The forests are dominated by the trees *Schefflera* sp., *Bonnetia roraimae* Oliv., and the pteridophyte *Cyathea delgadii* Sternb. Several epiphytic species are also found, such as the
bromeliad *Tillandsia turneri* Baker and fern genera *Elaphoglossum*, *Grammitis* and *Hymenophyllopsis*. The bogs are dominated by monocot grass-like species such as *Cortaderia roraimensis* (N.E. Br.) Pilg. (Poaceae), several Eriocaulaceae (*Paepalanthus* spp.) and Xyridaceae (*Orectanthe sceptrum* (Oliv.) Maguire, *Xyris* spp.).

The specimen here cited was collected on the forest edge. It presents clambering habit, culms up to 1.5cm thick, and foliage leaf blades up to 20cm long (Fig. 3). On the other hand, the individuals found in bogs (photographed but not sampled) are caespitose with erect culms which rarely reach 2m high (Fig. 2). The foliage leaf blades are glaucous and typically deflexed, as the specific epithet suggests. All the individuals observed in the field presented foliage leaf sheaths without fimbriae on the margins, foliage leaf blades up to 20cm long, deflexed, glabrous on both surfaces and typically coriaceous, which are useful vegetative characters for recognizing *A. deflexa* (Judziewicz 2004). In the same way, Judziewicz (2004) cited different habitats for this species, including open places, bases of cliffs, stream sides, bogs and rocky forests of tepuis. All these observations lead us to conclude that the plants from those two distinct habitats in the Brazilian Mount Roraima belong to the same taxon, i.e., *A. deflexa*.

The record of *Aulonemia deflexa*, which was never cited before in Brazil, is the first citation of the genus in the northern part of the country and it illustrates the poor state of botanical knowledge of this region. Much field work still must be done to gather information for a solid evaluation of the real plant diversity in the Brazilian Amazon.

ACKNOWLEDGMENTS

We thank Guilherme F. Ribeiro, Antônio L.T.O. Barbosa, Cinthia V. Varela, Lívia Echterncht and Luiza Angelini for their help in the field. Support for fieldwork was provided by FAPEMIG and Bamboos of the Americas (BOTA-SAP).

LITERATURE CITED

Molecular phylogeny of Asian woody bamboos: Review for the Flora of China

Chris M. A. Stapleton
Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK
email: chris@bamboo-identification.co.uk

Gráinne Ní Chonghaile and Trevor R. Hodkinson
Botany Building, School of Natural Sciences, Trinity College Dublin, D2, Ireland
email: hodkinst@tcd.ie

ABSTRACT

Molecular data was reviewed for the woody bamboo account in the English language Flora of China. The implications for recognition of suprageneric taxa and genera, for macro-morphological characters used in classification systems, and for the inferred biogeographical history of Asian bamboos are discussed. Support was not found for large supertribes based on inflorescence structure. Instead a restricted number of suprageneric taxa was suggested, with only 3 subtribes for Asian woody bamboos. The presence of both iterauctant and semelauctant inflorescences within subtribes shows that bamboos with these contrasting forms can be closely related, suggesting that simpler evolutionary pathways are required to explain them. Differences in sequence divergence between tropical and temperate subtribes suggests different biogeographical histories. It is hypothesised that temperate bamboos diversified later in Asia, only after the collision of the Indian and African tectonic plates with the Eurasian plate, and that the poor resolution of temperate taxa from sequence data is largely the result of rapid diversification after this biotic interchange. Sequence data provided somewhat equivocal evidence for recognition of genera. It was useful in demonstrating the polyphyly of broad interpretations of genera Sinarundinaria, Thamnocalamus, Schizostachyum, Racemobambos, Drepanostachyum, Arundinaria and Bashania. However, in the temperate Arundinariinae, sequence data was not capable of refining boundaries between closely related genera, for which different molecular markers may prove more useful.

1. Introduction

Preparation of the English language bamboo account for the Flora of China (Li et al. 2006) required a consideration of the molecular data available, in order to discuss which suprageneric and generic names to recognize in the treatment, and to balance molecular evidence with other considerations governing the recognition of genera. Morphological characters associated with major divisions within the bamboos were considered in the light of the molecular data. The evolutionary history of the Asian woody bamboos was also important, in order to assess whether they may have evolved first within China. This paper discusses the evidence available at the time of preparation of the account.

Several revisions of Asian woody bamboos have been undertaken over the past three decades in Europe and Asia. These have differed substantially in the recognition of particular subtribes and genera, partially because they give emphasis to different suites of characters, and classificaitons based on vegetative and floral characters are not always in agreement. In woody bamboos vegetative characters are both more numerous than in other grasses, and also more useful for identification in these infrequently flowering plants. A consensus on appropriate generic breadth and the characters of major importance at different ranks is still emerging, but a global nomenclatural account (Ohrnberger 1999) has been published, reflecting the names currently in more widespread international use.
Against this background molecular data has appeared over the last 15 years, providing some valuable insights into phylogeny. The molecular data can now start to be used effectively to examine the grouping or separation of many taxa, allowing a more natural classification to develop. It also suggests an interesting historical biogeographic hypothesis for the evolution of temperate Asian bamboos, and raises questions about the implications of molecular topologies for their systematics.

2. Recognition of suprageneric taxa

The woody bamboos had usually been considered (Clayton & Renvoize 1986; Watson & Dallwitz 1992; Soderstrom & Ellis 1988a, Stapleton 1994a; Zhang & Clark 2000; Li 1997; Ohrnberger 1999) to constitute a tribe, Bambuseae Kunth ex Nees within subfamily Bambusoideae and the grass family Poaceae. Molecular support for the monophyly of the tribe varied, with different relationships with a potentially sister group of herbaceous bamboos, the Olyreae, being suggested in different analyses. More recently Bambuseae has received less support. Bouchenak-Khelladi et al. (2008) and Sungkaew et al. (2008) inferred non-monophyly of woody bamboos, with Olyreae placed sister to the 2 tropical Bambuseae clades and the temperate clade (now known as Arundinariaceae) as the most outlying group of Bambusoideae.

Suprageneric classification within the woody bamboos has been very complex. A variety of characters were utilised at different times to define more than 50 suprageneric taxa at different ranks (Ohrnberger 1999). The largest taxa proposed, which divided the woody bamboos into two groups on the basis of gross inflorescence structure, were described at the level of supertribe as Bambusodae Liou and Arundinarodae Liou, (synonymous with the invalid but widely used Bambustae Keng & Keng f. and Arundinariatae Keng & Keng f.). Below these were a wealth of different tribes and subtribes applied in conflicting ways in different treatments. The Chinese language Flora of China bamboo account (Keng & Wang 1996) used 13 taxa at three suprageneric ranks: 2 supertribes and 6 tribes, some of which were subdivided into subtribes (table 1). Other morphological classifications have simplified this to a system using only subtribes (Soderstrom & Ellis 1988a; Stapleton 1994a; Dransfield & Widjaja 1995; Li 1997; Judziewicz et al. 1998).

Table 1. Suprageneric taxa used in Flora of China (Chinese version), Keng & Wang (1996).
evolution in geographically distant bamboos, and
the molecular evidence has clearly demonstrated
its existence. Examples are the S American genera
Guadua and *Otatea*, morphologically similar
to the Asian genera *Bambusa* and *Yushania*
respectively, but shown to be unrelated in
molecular phylogenies (Kobayashi 1997; Zhang 1996; Ní Chonghaile 2002). Supertribes *Bambusodae* and *Arundinarodae* Liou were based
on homoplasious characters (morphologically
similar but not homologous) and hence grouped
genera from Asia, Africa, and S America.

The two supertribes were distinguished by the
morphological character of inflorescence form,
either iteruactant (indeterminate) or semeluactant
determinate), defined respectively by presence
and absence of buds, prophylls, and other bracts.
This distinction had long been considered
fundamental to bamboo morphology and
classification (Holttum 1958; McClure 1966;
Keng 1982; Clayton & Renvoize 1986; Zhang
1992), with implications for how bamboos are
related to the rest of the grass family (Holttum
1958; Clayton & Renvoize 1986). The absence
of any support for these groups in the molecular
data has justified a rethinking of bamboo
classification and morphology (Soderstrom &
Ellis 1988a; Stapleton 1994a; Dransfield &
Widjaja 1995). It was noted (Li 1997) that it is
not always easy to distinguish between the two
inflorescence types, and that intermediate forms
exist, making it difficult to apply the distinction.
It has also been suggested (Stapleton 1997)
that the classic distinction merely represents 2
poorly defined syndromes, applied in different
ways by different authors, and that a critical
analysis of the several individual component
characters and their states is more appropriate
and useful.

Instead of the occurrence of a major
dichotomy in the woody bamboos at supertribe
level reflecting inflorescence form, molecular
evidence (Xia 1994; Zhang 1996; Ní
Chonghaile 2002; Bouchenak-Khelladi et al.
2008; Sungkaew et al. 2009) has suggested the
divergence of at least three major lineages.
These three clades all include taxa with more
or less ebracteate as well as bracteate inflores-
cences. They represent bamboos from tropical
latitudes of the Old World (paleotropical),
those from tropical latitudes of S & C America
(neotropical), and those from temperate latitudes.
Evidence from DNA content has supported the
distinction between temperate and tropical
bamboos (Gielis et al. 1997). The temperate
clade has the strongest and most consistent
molecular support as a monophyletic group.
Although it has often been suggested that Asian
tropical bamboos retain the largest number of
primitive characters within the woody bam-
boos, a variety of relationships between the
paleotropical, neotropical, and temperate
bamboos have been inferred from molecular
topologies. Plastid data (Ní Chonghaile 2002)
show one possible topology, with the two
tropical groups more closely related than the
temperate clade, when herbaceous bamboos
are used as an outgroup (Fig. 1).

As all 3 clades include both bracteate and
ebracteate taxa, and particularly as the Asian
temperate clade includes both bracteate and
ebracteate taxa in a complex pattern, it is clear
that the two morphological forms can be
closely related. Holttum (1958) and Clayton &
Renvoize (1986) postulated two conflicting
mechanisms for evolution of the different
forms, respectively assuming primitive and
derived status for the bracteate condition.
Soreng & Davis (1998) felt that the derived
condition suggested by Clayton & Renvoize
(1986) did not conform with the latest molecular
results, given the apparent age of the tropical
woody bamboos. For these, bracteate inflores-
cences would appear more likely to be primitive.
It is possible, however, that Holttum (1958) and
Clayton & Renvoize (1986) were both partially
correct, if bracteate inflorescences in the
different clades are not homologous. Holttum
(1958) considered bracteate inflorescences
primitive, which is likely to be correct in tropical
bamboos, but envisaged a complex loss of bracts
for ebracteate types. Clayton & Renvoize
(1986) suggested that bracteate synflorescences
evolved by reduction from a derived ebracteate
inflorescence through condensation of system of
spikelets, incorporating reduced vegetative
bracts. This could be correct for temperate
bamboos but seems less likely for tropical taxa.
Figure 1. Bootstrap consensus tree from trnL-F sequence data (Ni Chonghaile 2002). Numbers represent the bootstrap support values obtained for the respective branches. Bootstrap support values of 90-100% are considered strong, 70-89% moderate, and less than 70% weak.
Figure 2. One of 200 equally parsimonious trees obtained following sequence analysis of the ITS data (Ní Chonghaile 2002). Bold numbers represent the number of steps supporting each branch. Numbers above branches are branch lengths, numbers below are bootstrap support.
Figure 3. One of 100 equally parsimonious trees obtained following comparative sequence analysis of the combined trnL-trnF-ITS datasets (Ní Chonghaile, 1st draft thesis, 2002).

Numbers above branches are branch lengths, numbers below are bootstrap support values.
The mixture of bracteate and ebracteate inflorescences seen in the temperate clade would remain problematic, but there are possible homologies (Stapleton 1997) that would allow a much closer relationship than the two complex evolutionary processes previously envisaged by either Holttum (1958) or Clayton & Renvoize (1986). Direct homology between prophylls in the bracteate inflorescence and lower glumes in the supposedly ebracteate inflorescence would be a much simpler explanation, and this would conform more closely with the molecular data. Apparent loss of bracts would then be explained instead by elongation of the axes on which they are borne, as has been described and illustrated elsewhere (Stapleton 1997).

Thus the two supertribes and the broad syndromes of semelauctant and iterauctant inflorescences, applied in the Chinese language Flora of China bamboo account (Keng & Wang 1996), are difficult to justify in the light of recent molecular evidence, as are the evolutionary mechanisms (Holttum 1958; Clayton & Renvoize 1986) proposed to explain them.

3. Recognition of subtribes

As well as supertribes, some of the more inclusive interpretations of subtribes have also now been shown to be too broadly circumscribed to represent natural lineages. *Bambusinae* J. Presl, as interpreted by Clayton & Renvoize (1986) included the S American genus *Guadua* as well as Asian tropical genera, and it is clearly paraphyletic (Zhang 1996). So is *Arundinariinae* Benth., as interpreted by Clayton & Renvoize (1986), as it included in addition to part of the temperate Asian & N American clade, several S American genera, now placed in separate subtribes, as well as some Old World tropical genera, none of which are closely related (Zhang 1996; Kobayashi 1997). Similarly, Keng & Wang (1996) placed *Chimonocalamus* and *Drepanostachyum* in the group *Chusqueae*, a group recognized at tribal level although probably more appropriate as a subtribe. This group included the S American genus *Chusquea*, making it paraphyletic according to molecular evidence. Thus any superficial similarity in ramification of a multitude of small branches would seem from the molecular data to be entirely homoplasious.

The phylogeny inferred from one fairly comprehensive molecular data set (Ni Chonghaile 2002) would support the recognition of 3 Asian subtribes (Fig. 1). Only one temperate subtribe, *Arundinariinae* Benth. is supported. Within that subtribe sequence data provides little information on further divisions or the primitive versus derived nature of character states. The three genera with 6 stamens, *Sasa*, *Acidosasa* and *Hibanobambusa*, are well nested within the temperate clade but not strongly associated. The same can be said for those with bracteate inflorescences: *Phyllostachys*, *Chimonobambusa*, *Hibanobambusa*, and *Shibataea*. Nevertheless, this suggests that they have retained or regained these character states independently and should not be combined on the basis of these characters alone. Thus there is no molecular evidence for the existence of separate lineages represented by subtribes *Sasiniae* and *Shibataeinae*.

In addition, there is only evidence for two paleotropical subtribes, *Bambusinae* Benth. and *Melocanninae* Benth. Molecular evidence does not support the existence of a single, separate lineage for the 3 genera of tropical 6-stamened Asian bamboos with more derived character states in the inflorescence, once united under the general term semelauctant. On those grounds it would appear that it was probably not necessary to describe subtribe *Racemobambosinae* (Stapleton 1994c) to accommodate such a group. Two genera placed in this subtribe, *Racemobambos* and *Neomicrocalamus*, are now suspected from ITS data (Ni Chonghaile 2002) to be only distantly related. However, the long branches on which both these genera are placed in the ITS analysis (Fig. 3) has suggested that neither of them are closely related to the core *Bambusinae*, although that was considered to be the best subtribe in which to place them for the Flora of China English version.

4. Relative diversity of the subtribes: possible implications for biogeography

Molecular investigations that have sequenced genes from tropical and temperate
bamboo subtribes have all revealed similar patterns of relative sequence divergence between the clades (Xia 1994; Zhang 1996; Ní Chonghaile 2002). Variation between sequences has been greater in the paleotropical bamboos than in the temperate clade (Fig. 1.). It is noteworthy that while paleotropical bamboo species that are difficult to distinguish morphologically have often revealed significant sequence divergence, many molecular investigations have failed to separate temperate bamboos that demonstrate relatively larger differences in morphology, including different forms of rhizome and inflorescence. While cladistic analysis of morphological characters (Zhang 1996) has shown similar levels of resolution in tropical and temperate bamboos, analysis of sequences from the temperate clade has failed to resolve a clear topology, with only weak support for most of the internal branches and a polytomic structure in consensus trees.

A similar polytomic topology has been produced from analysis of sequences from the Andean representatives of *Chusquea* (Kelchner & Clark 1997; Clark 2001), with little resolution and a high number of autapomorphies. It was suggested that such a topology, along with intergradation of morphological characters, is the result of rapid and relatively recent diversification.

There is some support for the contention that the temperate clade polytomy is also the result of such recent diversification, based on the high degree of ITS sequence heterogeneity (Ní Chonghaile 2002). Failure to homogenise the sequence types could be attributable to an insufficient number of generations, arising from more recent arrival of temperate bamboos in Asia, relative to tropical species.

Distribution of woody bamboos is strongly influenced by their reproductive biology. Any consideration of time scales for diversification in bamboos has to take into account their relatively long generation times. Because temperate bamboos have especially long flowering cycles of up to 150 years, in terms of number of generations, a 'relatively recent' diversification can have occurred up to 100 times as long ago as one for annually flowering plants, or up to 10 times as long ago as one for most tropical bamboos, which have shorter life cycles. Effects of infrequent flowering are compounded by scarcity of dispersal mechanisms in bamboos. Bamboo lemmas are usually only shortly mucronate, without a well developed awn, and usually either glabrous or shortly scabrous. This reduces the chances of animal dispersal by attachment to fur or feathers. The caryopsis is simple, relatively large and heavy, so that wind dispersal is also unlikely. Moreover, seed viability is low, requiring prompt germination, and the exacting habitat requirements of bamboos make them poor pioneer species. The clear phylogenetic separation between most bamboos on different continents demonstrates their poor ability to effect long distance dispersal. The success of introduced bamboos in Europe and N America also suggests that natural dispersal has been problematic in the past. It would seem likely that historical causes of disjunct biogeographic distributions are probably of great importance in the woody bamboos, as they are in many other groups of plants (Raven & Axelrod 1974).

If the disparity in sequence divergence is attributable to more recent diversification in the temperate clade than in the paleotropical bamboos, then an explanation for this can be sought in the biogeographical history of the woody bamboos, but this is an area that has received little study.

Soreng & Davis (1998) reported that the earliest grass macrofossils known indicate a date in the Tertiary for the evolution of the first grasses, with the earliest published record dating from the Palaeocene, according to Linder & Barker (2000). Attempts to date the divergence of clades within the Poaceae using molecular clock approaches calibrated with fossil records (Salamin 2002) have produced more recent dates. These conclusions may only indicate that the oldest fossils still do not represent the first appearance of the taxa concerned. The molecular evidence, by showing such a clear disjunction between bamboo populations in S America and those of the rest of the world (Fig 1.), would seem to suggest that if long-distance dispersal is ruled out, primitive bambusoid grasses ancestral to both
Figure 4. Positions of present-day continents at the time of break-up of Gondwanaland (precursors of present day S America, Africa, Madagascar, India, Antarctica, and Australia) in the Cretaceous Period. Bamboos of S America are very distinct from those of Africa and Asia. From the Paleogeographic Atlas Project, University of Chicago. http://www.geo.arizona.edu/~rees/global290-0pgeogrev.mov

Figure 5. Positions of India and the Arabian Peninsular of the African continental block, as they approached the Eurasian plate around 40 M yrs ago. From Department of Geology, Northern Arizona University. http://jan.ucc.nau.edu/~rcb7/globaltext.html
Asian and S American bamboos existed prior to, or shortly after, the break-up of Gondwanaland (Fig. 4). That was substantially earlier, in the order of c.125-100 million years ago (mya). Recent investigations (Bouchenak-Khelladi et al., in press) are supporting later dates, around 50 mya, for diversification in the BEP clade. Nevertheless, whether bamboos evolved in Cretaceous or Tertiary times, many tropical bamboos from Asia and S America would have enjoyed a relatively long period in which to diversify and stabilize into genetically distinguishable genera.

However, whether early bamboo ancestors originated either in Gondwanaland or later in Africa, temperate bamboos of N Asia are most likely to have only reached Asia after the arrival and collision of either Africa or India with the Eurasian plate (Fig. 5). Both those continents could theoretically have sustained populations of early temperate bamboo ancestors, both having mountain refuges in which they could feasibly have passed through the tropics. Both have extant temperate bamboos, and both collided with the Asian plate from the Eocene onwards, beginning about 45 million years ago. Thus either Africa/Arabia or India may have provided Asia with early temperate bamboos as a result of this geologically driven biotic interchange. This could only have occurred after the eventual establishment of land routes across the seas of the Tethys Ocean as Alpine and Himalayan orogenic activity strengthened, 20 mya or later, as Africa and India continued to move slowly northwards. Global cooling and consequent drying of the Mediterranean/ Tethys Seas might have aided the delay or channelling of this dispersal process towards N Asia. Such a relatively recent biotic interchange and sudden rapid dispersal could explain the lack of genetic variation in the temperate clade. It would seem possible that for much of the Tertiary Period, ancestors of the N Asian temperate bamboos were isolated on African or Indian mountains travelling northwards through the tropics. This period could have provided the isolation suggested by the strong support for monophyly of the temperate clade. Following this isolation, eventual dispersal into Eurasia from Africa or India could have suddenly provided a wealth of subtropical to temperate montane habitats and large areas of lower boreal temperate land to the north and east for colonisation and rapid diversification.

One alternative scenario is evolution and diversification of temperate bamboos in China, with dispersal west into N America and south into India and Africa. For that to be the case, temperate bamboos would have to have been present in Laurasia at a much earlier time. The presence of temperate N American bamboo species would potentially suggest that these are Laurasian remnants, as is the case in many other Angiosperms. However, that would have required an earlier evolution of temperate bamboos, and early crossing of the North Atlantic Land Bridge from Europe to N America. The polytomy in Asian temperate bamboos with poor resolution and a high degree of ITS sequence heterogeneity would suggest a much more recent diversification instead, most likely due to more recent biotic interchange. Moreover, the molecular evidence (Stapleton et al. 2004) suggests that the closest Asian relative of the N American bamboos is *Pseudosasa japonica* from Japan, rather than the morphologically closer species of *Sarocalamus* from the western, Himalayan, end of the range of Asian temperate bamboos. This suggests later dispersal along the NE coast of Asia and across the Bering Land Bridge into N America instead. Another problem with a Laurasian origin for temperate bamboos is the apparent presence of temperate species in Madagascar, which became isolated before the collision of India and African plates with Asia. While many plants and animals could disperse from Africa across the Mozambique Channel, this appears less likely for temperate bamboos.

Key innovations allowing temperate opportunities to be exploited to the full could have included tessellated, frost-hardy leaves, and more open inflorescences with a lower ratio of anthers to ovaries, making them more efficient on a windy mountain instead of a tropical forest environment. Long rhizomes of different form could have aided dispersal into the new
Caution should be taken in drawing conclusions about relationships within this group, however, until a broader range of species has been studied, including representatives of the four genera Sinocalamus, Neosinocalamus, Dendrocalamopsis and Sellulocalamus. Keng & Wang (1996) in FRPS recognized three of these four morphologically intermediate genera, while Li (1997) recognized none, and there was insufficient molecular data to influence decisions for the Flora of China (Li et al. 2006).

The semi-scandent bamboos within this subtribe have caused considerable taxonomic difficulties in the past. Along with advanced branch structures and other adaptations to assist climbing and branch proliferation within a tree canopy, there has often been modification of the inflorescence and the interpretation of floral morphology has been problematic. Within Bambusinae two such genera with relatively derived partially ebracteate, budless inflorescences are Racemobambos from SE Asia, and Neomicrocalamus from the E Himalayas and SW China. Gamble (1890) described Microcalamus pratnii as a monotypic genus with bracteate panicles of 6-stamened, distant spikelets, initially described as having peduncles (l.c.), later corrected to pedicels (Gamble 1896). Oliver (1891) pointed out the illegitimacy of the name, meanwhile misidentifying it completely as Sasa kurilensis. Keng (1983) re-described Gamble’s invalid genus as Neomicrocalamus, considering it to be related to Ampelocalamus, another semi-scandent genus, but with 3 stamens. Holttum (1958) had earlier described Racemobambos with bracteate racemes of spikelets borne on short stalks, which to him suggested some similarity to Arundinaria. Thus in both these genera the presence of pedicellate spikelets drew attention to a similarity to genera such as Arundinaria, Ampelocalamus and Sasa, unusual in a bracteate inflorescence with 6 stamens. This similarity caused the author of Neomicrocalamus to decide to combine both genera as Racemobambos (in Wen 1986), a decision followed by Chao & Renvoize (1989), although Neomicrocalamus was later resurrected for FRPS (Keng & Wang 1996).

5. Diversity and recognition of genera within the subtribes

5.1 BAMBUSINAE

Within the Bambusinae there was inadequate sampling for any detailed assessment of genera for the Flora of China. Surprising molecular results came from plastid data (Ni Chonghaile 2002), with isolated inferred positions for Bambusa oldhamii from analysis of rpl16 sequences, and Dendrocalamus giganteus from trnL-trnF sequences. Both species have been placed in the infrequently recognised genus Sinocalamus, which has morphological characteristics intermediate between those of Bambusa and Dendrocalamus. Sinocalamus is not generally recognized, as it cannot be distinguished readily on morphological grounds. The distinction between Bambusa and Dendrocalamus is itself problematic, although there is early indication from molecular data (Fig.1) that Bambusa species can be separated. Loh et al. (2000) also found D. giganteus to resolve away from D. brandisii in their AFLP study.

Caution should be taken in drawing conclusions about relationships within this group, however, until a broader range of species has been studied, including representatives of the four genera Sinocalamus, Neosinocalamus, Dendrocalamopsis and Sellulocalamus. Keng & Wang (1996) in FRPS recognized three of these four morphologically intermediate genera, while Li (1997) recognized none, and there was insufficient molecular data to influence decisions for the Flora of China (Li et al. 2006).

The semi-scandent bamboos within this subtribe have caused considerable taxonomic difficulties in the past. Along with advanced branch structures and other adaptations to assist climbing and branch proliferation within a tree canopy, there has often been modification of the inflorescence and the interpretation of floral morphology has been problematic.

Within Bambusinae two such genera with relatively derived partially ebracteate, budless inflorescences are Racemobambos from SE Asia, and Neomicrocalamus from the E Himalayas and SW China. Gamble (1890) described Microcalamus pratnii as a monotypic genus with bracteate panicles of 6-stamened, distant spikelets, initially described as having peduncles (l.c.), later corrected to pedicels (Gamble 1896). Oliver (1891) pointed out the illegitimacy of the name, meanwhile misidentifying it completely as Sasa kurilensis. Keng (1983) re-described Gamble’s invalid genus as Neomicrocalamus, considering it to be related to Ampelocalamus, another semi-scandent genus, but with 3 stamens. Holttum (1958) had earlier described Racemobambos with bracteate racemes of spikelets borne on short stalks, which to him suggested some similarity to Arundinaria. Thus in both these genera the presence of pedicellate spikelets drew attention to a similarity to genera such as Arundinaria, Ampelocalamus and Sasa, unusual in a bracteate inflorescence with 6 stamens. This similarity caused the author of Neomicrocalamus to decide to combine both genera as Racemobambos (in Wen 1986), a decision followed by Chao & Renvoize (1989), although Neomicrocalamus was later resurrected for FRPS (Keng & Wang 1996).
Nowhere is the confusion caused by the two syndromes termed iterauctant and semelauctant more apparent than in the various interpretations of the inflorescences of these two genera. Much of the discussion about whether to recognize one or two genera centered around which, if either, were semelauctant. McClure (1966) described the inflorescence of *Neomicrocalamus prainii* as iterauctant on the basis of the alleged presence of buds in glume axils. Chao & Renvoize (1989) described it as iterauctant on the basis of small bracts subtending the spikelets. Dransfield (1992) objected to this, and decided that it was the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel’. Li (1997) considered once more that the presence of prophylls that made it iterauctant, pointing out that they were absent in *Racemobambos*. Stapleton (1994c) decided that the prophyll was present in both genera, but inserted at a different point, suggestive of an intermediate evolutionary position between other bracteate inflorescences and the ebracteate semelauctant inflorescences of the temperate bamboos, with the prophyll inserted away from the point of branching on an extended promontory, to form a ‘pedicel'.
5.3 ARUNDINARIINAE

5.3.1 Introduction

In molecular studies to date, sequencing of plastid or nuclear DNA regions in the temperate clade has produced polytomic results from which little reliable phylogenetic resolution can be inferred (Xia 1994; Zhang 1996; Ni Chonghaile 2002). From the data available it would seem that evolution proceeded rapidly and left little evidence of the order of events. This makes it difficult to recognize synapomorphic groups or to relate these to morphological characters in a conventional manner. It also makes it difficult to determine generic boundaries, or to make comparative judgements of the appropriate sizes for genera.

One question that arises from the molecular topology (Fig. 1) is whether the temperate bamboos are simply ‘over-taxonomised’, and whether the polytomy is the result of intensive sampling, suggesting that the number of taxa has become too large. If this were the case then it should be possible to group the taxa into fewer, larger natural units, representing lineages supported by shared, derived characters. This does not seem to be the case, however. With so little structure resolved it is not possible to justify any lumping of genera on molecular grounds, unless the entire temperate clade were to be united in one genus, Arundinaria. It could be argued that even Phyllostachys should not be recognized, as that would render Arundinaria paraphyletic. Where internal branches receive weak bootstrap support, for example the clade Arundinaria, Pleioblastus, Hibanobambusa, Sasa, and Shibataea which has 60% support (Fig. 3), there is little correlation with morphological characters, as this group includes taxa with ebracteate and bracteate inflorescences as well as those with 3 and 6 stamens.

Attempts to recognize large genera within the temperate bamboos (Chao et al. 1980; Clayton & Renvoize 1986; Chao & Renvoize 1989; Li 1997) on a morphological, largely floral basis have generally fallen foul of parallel evolution, as witnessed by even this limited molecular data. Although fewer, larger genera have often been recognized in the grasses with the implicit intention of simplifying identification (Barkworth 2000), in the case of infrequently flowering bamboos this would be counterproductive. The limited molecular evidence would indicate that bamboo genera including Arundinaria, Sinarundinaria, and Thamnocalamus when interpreted broadly in the past formed artificial groups and did not represent natural lineages.

In non-bamboo grasses, a similar situation exists. Larger genera have often been proven polyphyletic from molecular data. Broad interpretations of genera such as Bouteloua, Sporobolus, Sorghum, Eragrostis and Chloris have now been shown to be paraphyletic or polyphyletic from molecular evidence (Columbus et al. 2000; Ortis-Diaz & Culham 2000; Spangler 2000; Hilu & Alice 2000). Similarly, poor resolution of a molecular topology is not confined to bamboos. The Rytidosperma clade of the temperate grass tribe Danthonieae, includes species from up to 8 genera that form an unresolved polytomy (Barker et al. 2000), explained by recent divergence (Linder & Barker 2000). Other, smaller groups of grass genera have also failed to resolve well in molecular investigations (Gómez-Martinez & Culham 2000; Columbus et al. 2000).

As with other grasses, many temperate bamboo genera with reasonable morphological distinctions have not been resolved by molecular data. Current opinions on the grounds for recognizing taxa differ, and the criterion of molecular monophyly is by no means the only one finding favour in plant systematics. If generation times have not been sufficient for concerted evolution to take effect, as suggested by the ITS sequence heterogeneity present in the temperate clade (Ni Chonghaile 2002), then we would also expect a large number of apparently paraphyletic groupings to persist. This would be consistent with colonisation of new habitats, in which competition is scarce and extinction levels are low. These considerations should be taken into account as extenuating circumstances before non-monophyletic temperate clade genera are relegated to the trashcan. A morphologically based classification for the temperate clade would appear to be
the only available option at the present time, with the limited information from molecular data being used primarily as an indicator of homoplasy. Any revision of the classification on the basis of a strict interpretation of the molecular phylogeny would be so out of step with the current classification as to be entirely unacceptable.

5.3.2 Evidence from plastid data

Plastid data has not resolved a topology of any consistency within the subtribe Arundinariinae, which is here interpreted as the entire temperate Asian, African & N American clade. Branch lengths have been short and not well supported. The only taxon to show a reasonable number of autapomorphic characters in trnL-trnF sequence data (Ni Chonghaile 2002) was the subtropical Central African species, Yushania alpina, which resolved on the longest branch, with 8 steps. This bamboo can be separated from other members of the temperate clade by a suite of morphological characters, including frequently dominant lateral rather than central branches. Morphologically, it differs very clearly from Arundinaria, in which it was first described, and less clearly from temperate Asian members of Yushania, the only other genus in which it has been placed. The other African 3-stamened species in the temperate clade, Thamnocalamus tessellatus, was transferred from the tropical 6-stamened genus Nastus, and remained in Arundinaria until Soderstrom & Ellis (1982) transferred it to Thamnocalamus on the basis of similarities in leaf anatomy to the Himalayan type species of the genus, T. spathiflorus. Soderstrom & Ellis later stated (1988b) that leaf anatomy alone was of no use in recognizing either species or genera of the Arundinariinae. While the trnL-trnF sequence data does not separate T. tessellatus as well as Yushania alpina, the data shows substantial difference between T. tessellatus and T. spathiflorus. Therefore from the plastid data it would appear that neither of the African species, Yushania alpina and Thamnocalamus tessellatus are closely related to the other, Asian species in the genera in which they are usually placed.

One interesting result from the trnL-trnF sequence data is an apparent association between Oligostachyum oedogonatum and Pleioblastus oelosus. The latter is a species that has been placed with little confidence in both Pleioblastus and Arundinaria, and which has distinctive branching close to that of Oligostachyum oedogonatum.

The native N American temperate species A. gigantea, type species of Arundinaria, was shown by rp116 data (Ni Chonghaile 2002) to be closer to Pseudosasa japonica than any other Asian bamboo (BS 90%), a result supported by ndhF data (Zhang 1996). While nearly all Asian taxonomists have recognized the genera Pseudosasa and Indocalamus on the basis of their restricted branching, many authors (Chao & Chu 1981; Clayton & Renvoize 1986; Chao & Renvoize 1989; Zhang 1992; Li 1997) have sought to unite A. gigantea with similar genera from Asia including Pleioblastus and Bashania. However, if such genera are less closely related to A. gigantea than Pseudosasa, as the molecular evidence appears to suggest, then either they should all be combined, or they should all be kept separate.

5.3.3 Evidence from nuclear and combined plastid/nuclear data

To date, ITS sequence data has provided better resolution of relationships within the subtribe than plastid data (Fig. 2). ITS and combined ITS & trnL-trnF datasets provide slightly better evidence to substantiate the distinction of several genera on morphological grounds (Fig 3).

PACHYMORPH-RHIZOMED BAMBOOS

Within Arundinariinae the three genera Ampelocalamus, Drepanostachyum, and Himalayacalamus represent the pachymorph-rhizomed bamboos that have a predominantly subtropical distribution.

Ampelocalamus was considered (Clayton & Renvoize 1986; Chao & Renvoize 1989) part of Sinarundinaria, along with Drepanostachyum, but is well distinguished from the other two genera by its vegetative branching and inflorescence characters. This distinction is
supported by the molecular topology. Within *Ampelocalamus* there would appear to be substantial genetic variation. *A. miianningensis* was transferred from *Dendrocalamus* on the basis of its similarities to *A. patellaris* and *A. scandens* (Li & Stapleton 1996). These would seem to be closer relations than any other bamboos sampled, but still not particularly close.

Himalayacalamus was traditionally considered part of *Thamnocalamus* (Munro 1868; Clayton & Renvoize 1986; Chao & Renvoize 1989), because of its tightly tufted compressed racemose inflorescences. *Drepanostachyum* was placed in *Arundinaria* (Munro 1868; Gamble 1896) or *Sinarundinaria* (Clayton & Renvoize 1986; Chao & Renvoize 1989), because it has open panicles, often in broadly sweeping falcate form, hence its name *Drepanostachyum* (*drepano* in Greek and *falcis* in Latin mean sickle). Keng (1982) realised a similarity between *Drepanostachyum* and *Himalayacalamus* in their multitude of branches. Stapleton (1994c) pointed out other similarities in fasciculation of inflorescence branches and delicate glumes. *Himalayacalamus* has even been considered synonymous with *Drepanostachyum* (Demoly 1996; Li 1997), but differs in a range of floral and vegetative characters, and their species have remained in separate genera in floral accounts (Stapleton 1994c; Seethalakshmi 1998; Stapleton 2000). The latter approach is supported by the molecular evidence, especially ITS data (Ni Chonghaile 2002), in which *Himalayacalamus* received 84% BS in the neighbor joining analysis and 90% in the neighbor joining analysis.

A more temperate distribution is generally the case for the four genera *Thamnocalamus*, *Fargesia*, *Yushania* and *Borinda*.

The strong distinction in vegetative prophylls and branching between *Thamnocalamus* and the other three genera (Stapleton 1994b) is reflected in the well-supported separation of *Thamnocalamus* in both plastid and nuclear data (Guo et al. 2001; Guo et al. 2002; Ni Chonghaile 2002). Thus there is relatively strong molecular evidence for recognizing *Fargesia*, instead of the common practice of including it in *Thamnocalamus* (Clayton & Renvoize 1986; Chao & Renvoize 1989; Demoly 1996; Li 1997).

There is also some weak molecular evidence to distinguish between the core *Fargesia* species, which share compressed inflorescences, and species of *Yushania* and *Borinda*, with open inflorescences. However, as is often the case with bamboos, the strength of the bootstrap support is reduced as the core group is expanded, and these three genera, all with very similar branching, tend to merge into a clade with less distinguishable groupings. They were not well distinguished in ITS or combined ITS & GBSSI analyses (Guo et al. 2001; Guo et al. 2002; Guo & Li 2004).

The genus *Borinda* is included in *Fargesia* by Yi (1997), in *Yushania* (as *Sinarundinaria*) by Li (1997), or maintained as a separate genus by Wang (1997). Most species were originally described in *Fargesia*, but molecular evidence (Ni Chonghaile 2002) gives support for their separation from the core species of that genus. When *Borinda* was published (Stapleton 1994b) it was pointed out that the inflorescences were similar to those of *Yushania*. The species were not transferred to *Yushania*, as there was a possibility that the similarity in inflorescences was homoplasious (Stapleton 1998), and because *Yushania* has usually been interpreted as a genus of spreading bamboos with long, running rhizomes (Takenouchi 1931; Keng 1957; Wang & Ye 1981; Chen & Chia 1988; Song & Wang 1994) while species placed in *Borinda* are all clump-forming with short rhizomes. This distinction will have to remain the morphological criterion for generic placement of non-flowering species for the time being, along with finely grooved culms in *Borinda*.

As no groups had substantial bootstrap support in any DNA sequencing analysis, any similarities in their inflorescences are presumably not homoplasious. It would appear that these species are all closely related, and that fingerprinting techniques would be appropriate to investigate their phylogeny in more detail.

Molecular data is useful in suggesting affinities of species in this group, and should
be of predictive value for clump-forming species originally described in *Fargesia* for which inflorescences remain unknown. For example, the data supports the transerral of *Fargesia utilis* into *Borinda*. It resolved closer to other species of *Borinda*, which have open inflorescences, than to the species of *Fargesia* that, like the type species *F. spathacea*, are known to have compressed inflorescences (*F. nitida, F. murielae*, and *F. dracocephala*). It seems very likely that there are very many more species described without flowers in *Fargesia* that belong instead in *Borinda*. To avoid placement of the species of *Borinda* in two different genera in the Flora of China, it was decided to keep *Borinda* as a synonym of *Fargesia* for the time being.

Gaoligongshania, a distinctive monotypic genus, is well distinguished by both molecular and morphological evidence. Molecular evidence (Ni Chonghaile 2002; Guo & Li 2004) has not revealed any particular affinity to either *Indocalamus* or *Yushania*, to which Li (1997) suggested it might be related, nor to any other taxon within the temperate clade.

LEPTOMORPH-RHIZOMED BAMBOOS

The strongest support for any group in the temperate clade is given to *Phyllostachys* in the ITS data (Fig 2). The strength of support for this clearly monophyletic group is surprising, as it was not resolved at all from plastid data, this clearly monophyletic group is surprising, ITS data (Fig 2). The strength of support for temperate clade is given to *LEPTOMORPH-RHIZOMED BAMBOOS* taxon within the temperate clade.

Suggested it might be related, nor to any other *Indocalamus* revealed any particular affinity to either *Phyllostachys* has been separated from the rest of the subtribe for a more substantial period of time. *Phyllostachys* would appear to be similarly distant from all other temperate genera sampled. Only one species, *Bashania fangiana* (*Sarocalamus faberi*), has been suggested as a close living relative of *Phyllostachys*, based on moderate bootstrap support from a neighbour joining analysis of combined plastid and nuclear sequence data (Ni Chonghaile 2002). One character that is shared between *Phyllostachys* and *Bashania fangiana* (*Sarocalamus faberi*) is reduced compression of basal branch internodes. As this compression is almost universal in woody bamboos, its loss would be a synapomorphy for a clade uniting *Phyllostachys* and *Sarocalamus*.

Among the other temperate bamboos with leptomorph rhizomes, it is not possible to resolve a detailed topology from the molecular data. Nevertheless, as with the pachymorph-rhizomed bamboos it is possible to hypothesise some relationships. On morphological grounds it might be considered justifiable to include some or all of the genera *Pleioblastus, Oligostachyum, Bashania* or *Pseudosasa* within *Arundinaria*. However, the molecular evidence suggests that this would constitute a paraphyletic group and would not be appropriate unless all these genera were included together, in addition to several other genera such as *Indocalamus, Hibanobambusa, Sasa*, and *Shibataea*, which differ much more substantially in their morphology, and are almost universally recognized.

One genus that is often still synonymised within *Arundinaria* is *Pleioblastus*. Stapleton (1997) pointed out that *Pleioblastus* differs in prophyll structure, with the prophyll forming a fused budscale, as seen in *Sasa, Pseudosasa* and *Indocalamus*. The molecular evidence would not suggest that *Pleioblastus* is more strongly related to *Arundinaria* than is other Asian genus. Within *Pleioblastus* there is considerable difference in stature, and different genera have been described, although they are no longer recognized. The species of smaller stature were included in the 6-stamened genus *Sasa* in FRPS (Keng & Wang 1996), while *Pleioblastus* was recognized for the larger species.

Among Asian species, the two species that are considered to be morphologically closest to the N American type species of *Arundinaria* are *Arundinaria racemosa* from the E Himalayas, and its close relative from SW China widely known as *Bashania fangiana*. Molecular data did not suggest that they are more closely related to *Arundinaria* than any other Asian bamboos. *Bashania fangiana* has been placed in *Bashania* or *Gelidocalamus*, from which it differs appreciably. While the molecular data (Fig. 2) suggests a close relationship for *Bashania fargesii* and *B. qingchengshanensis*, there is no evidence that *Bashania fangiana*, which has simpler branching, is closely related
to these two species. If all other Asian genera are to be maintained separate from *Arundinaria*, then it would appear that on the basis of molecular data there is no justification for continuing to place species such as these in *Arundinaria* for the Flora of China. There is supporting evidence for this from the geographic disjunction, as among leptomorph bamboos, these species are geographically furthest from the N American species of *Arundinaria*. Although *Bashania fangiana* and *Arundinaria racemosa* are morphologically very close to *Arundinaria* it seemed more appropriate to maintain *Arundinaria* as an endemic N American genus, and a new genus, *Sarocalamus* was described (Stapleton et al. 2004) for *Bashania fangiana* (as *Sarocalamus faberi*), *Arundinaria racemosa*, and another Chinese species, although this genus was not actually recognized in the Flora of China (Li et al. 2006).

Chimonobambusa is a genus that has been separated into three Sections, sometimes elevated to generic rank by some authors to give three genera *Chimonobambusa, Oreocalamus* and *Qiongzhuea*. The type species *C. marmorea* differs markedly from the other species in loss of vegetative branch prophylls, and this was reflected in the molecular data to a certain extent (Ní Chonghaile 2002), but the other species are difficult to separate into consistent groups. Molecular analysis (Ní Chonghaile 2002) did not distinguish the two species with quadrangular culms and thorns (*Oreocalamus*) from the species with most markedly swollen nodes (*Qiongzhuea*). It would appear that as with genera such as *Yushania* and *Borinda; Drepanostachyum* and *Himalayacalamus*; and *Sasa* and *Sasamorpha*, the three genera *Chimonobambusa, Oreocalamus* and *Qiongzhuea* are closely related. Deciding whether such genera should be recognized would require better molecular data, possibly using a technique more appropriate for closely related species, such as AFLPs (Hodkinson et al. 2000), a broader range of species, and a thorough morphological analysis. However, based on the phylogeny inferred from molecular results, there is currently no evidence to suggest that either grouping these genera together or separating them would better reflect natural lineages.

To summarize, DNA sequence data allowed the basic outline of woody bamboo phylogeny to be inferred as the basis of the Flora of China account (Li et al. 2006). Conflicting morpho-geographical classifications had previously been applied, giving different emphasis to vegetative or floral characters, and making assumptions about the homology and development paths of certain structures. Molecular data has revealed the unreliability of many such assumptions, and shown that inflorescence form should not be given priority over vegetative structures. DNA sequence data was not capable of revealing precise phylogenetic relationships between morphologically similar genera in the temperate clade. Explanations for this, linked to a potential bio-geographical history for this group, can be hypothesised and they may also help to explain the great diversity of Chinese bamboos. For tropical bamboos, insufficient taxa had been sampled for a comprehensive analysis, but enough indicators of likely relationships could still be inferred for the basic framework of a classification. Further molecular investigations have been undertaken since the publication of the Flora of China (Li et al. 2006), and yet more are currently under-way. These will be reviewed at a later date.

ACKNOWLEDGEMENTS

Missouri Botanical Garden is thanked for funding research to support the preparation of the Flora of China bamboo account. The Royal Botanic Gardens Kew provided facilities. Dr Jimmy Triplett is thanked for many helpful suggestions.

LITERATURE CITED

Takenouchi, Y. (1931). Memoirs of the Faculty of Science and Agriculture Taihoku University 3(1) (English translation by B.Y. Morrison, USDA 1933).

A New Species of *Chusquea* sect. *Swallenochloa* (Poaceae: Bambusoideae: Bambuseae) from Brazil

Lynn G. Clark¹ and Andrea Blong¹,²

¹Department of Ecology, Evolution and Organismal Biology, 253 Bessey Hall, Iowa State University, Ames, Iowa 50011-1020 U. S. A.
²1134 7th Ave SE Apt. 6, LeMars, Iowa 51031 U. S. A.

ABSTRACT

Chusquea hatschbachii from southern Brazil is described as new. It is illustrated, and compared and contrasted with *Chusquea windischii*, the species to which it is most similar. *Chusquea hatschbachii* is distinguished by upward-curving central branches, foliage leaf sheaths with prominent nerves, and spikelets 7.7-8.7 mm long with glumes III and IV and the lemmas awned. This species is a narrow endemic known only from the highest rocky outcrops of Morro da Igreja in the Serra Geral of Santa Catarina state. Updated keys to the species of *Chusquea* subg. *Swallenochloa*, incorporating this species and information on flowering features for another previously known only vegetatively, are presented.

RESUMO

Chusquea hatschbachii, uma espécie nova de bambu lignificado do sul do Brasil é descrita e ilustrada e comparada com *Chusquea windischii*, uma espécie mais parecida. A espécie nova distingue-se por apresentar ramos centrais curvados e ascendentes, bainhas das folhas dos ramos com nervios proeminentes, e espiguetas 7.7-8.7 mm de comprimento com glumas III e IV e as lemas aristadas. Esta espécie tem uma distribuição endêmico e restringido ao Morro da Igreja na Serra Geral do estado de Santa Catarina. Presentam-se chaves revisadas para as espécies de *Chusquea* subg. *Swallenochloa* no Brasil, incluindo a especie nova e dados sobre os caracteres reprodutivos para uma outra do grupo.

Thirty-six described species of *Chusquea*, representing all three subgenera, are known from Brazil. These bamboos occur in several habitats in Brazil, but are most diverse and ecologically abundant in the Atlantic forests and high altitude grasslands of southeastern Brazil (Joly 1970; Clark 1992; Judziewicz et al. 1999; Moreira et al. 2008). The shrubby *Chusqueas* or *Chusquea* subg. *Swallenochloa*, which are characteristic of high altitudes from Mexico and Central America through the Andes and southeastern Brazil, have been a particular interest of the senior author for many years. Ongoing study of this group revealed the existence of a new species from southern Brazil, *Chusquea hatschbachii*, which is here described and illustrated. Recent field work by Brazilian students led to the discovery of flowering material of *Chusquea riosaltensis* L. G. Clark (Moreira et al. 2008), which had been described by Clark (1992) based only on vegetative material. Given these discoveries, we here update the keys to the Brazilian species of *Chusquea* subg. *Swallenochloa* that were presented in Clark (1992) to incorporate the new species and the new data on *C. riosaltensis*.

TAXONOMIC TREATMENT

Key to the Species of *Chusquea* subg. *Swallenochloa* in Brazil (based on vegetative specimens)

1. Foliage leaf sheaths deciduous from the lower nodes of the subsidiary branches (C. *nudiramea* Group).
2. Foliage leaf blades 0.18-0.2 cm wide, 3.8-5.3 cm long; 2000-2100 m (Serra do Caparaó)...*C. caparaoensis*
2. Foliage leaf blades (0.2-) 0.4-1.2 cm wide, 3.4-16 cm long; 50-1800 m (São Paulo, Brazil to Uruguay).

3. Foliage leaves with the inner ligule 0.2-0.5 (-1) mm long, truncate, the sheaths lightly mottled with green; subsidiary buds/branches in several more or less linear rows, subequal. ... C. juergensii

3. Foliage leaves with the inner ligule (0.5) 1-4 mm long, rounded, the sheaths usually uniform in color, rarely lightly mottled with green; subsidiary buds/branches in 1-2 rows curving around the central bud, constellate, 2-3 more robust subsidiary buds/branches present.

4. Smaller subsidiary branches 4-10 per node; culm leaf blades narrow triangular, erect becoming reflexed, caducous, adaxially pubescent at the base, the sheaths 2-3.3 (-6.5) times as long as the blades (Santa Catarina). .. C. nudiramea

4. Smaller subsidiary branches 15-80 per node; culm leaf blades triangular, erect, usually persistent, adaxially glabrous or retrorsely scabrous at the base, the sheaths 1-22.5 times as long as the blades (Paraná to Rio Grande do Sul). C. mimosa

5. Branching extravaginal; subsidiary branches (12-) 20-60 per node, more or less horizontally exserted, in 2-6 rows, constellate (C. heterophylla Group).

6. Foliage leaf blades 1.3-3.7 cm long, 0.2-0.4 cm wide; subsidiary branches 3-15 cm long, (12-) 20-45 per node, the central branch usually developing, robust; nodes with the supranodal ridge prominent; subsidiary buds in 2 rows in a crescent-shaped arrangement; culms 1-2 (-3.5) m tall. ... C. heterophylla

6. Foliage leaf blades 0.8-2 cm long, 0.1-0.2 cm wide; subsidiary branches 1.5-4 cm long, 30-60 per node, the central branch usually not developing; nodes with the supranodal ridge obscure; subsidiary buds in 5 or 6 rows in a triangular arrangement; culms 0.5-1 m tall. ... C. microphylla

5. Branching intravaginal; subsidiary branches 3-20 (-30) per node, erect, in 1 row, linear (Chusquea sect. Swallenochloa).

7. Central branch curving away from the main culm, sometimes more or less erect at the base before curving.

8. Foliage leaves 8-10 (-13) per complement; foliage leaf blades 0.3-0.4 cm wide; Serra do Ibitipoca, Minas Gerais. ... C. riosaltensis

8. Foliage leaves 3-8 per complement; foliage leaf blades 0.4-1 cm wide; Morro da Igreja, Santa Catarina.

9. Culms ca. 1 m tall; subsidiary branches 4-11 cm long; central branch strongly sinuous. ... C. windischii

9. Culms 1-1.5 m tall; subsidiary branches 4-16 cm long; central branch gently curved. ... C. hatschbachii

7. Central branch erect and more or less appressed to the main culm for its full length.

10. Foliage leaf blades 0.06-0.25 (-0.4) cm wide, L:W = 17-60, the base attenuate.

11. Foliage leaf blades 0.06-0.15 cm wide, L:W = (25-) 33-60; subsidiary branches (8-) 18.5-65 cm long, usually nodding, the shorter branches ascending to slightly arched; culm leaf sheaths fused at the base for 0.3-1.5 cm, the blade usually not distinguishable from the sheath; culms (2-) 4-5 m tall (1000-1720 m altitude). ... C. nutans

11. Foliage leaf blades 0.07-0.25 (-0.4) cm wide, L:W = 17-31 (-47); subsidiary branches (4-) 8-21 cm long, usually erect, sometimes arching slightly; culm leaf sheaths not fused at the base, the blade distinguishable from the sheath; culms (0.5-) 2-3 m tall [(1600-) 2100-2500 m altitude] C. pinifolia

10. Foliage leaf blades 0.35-1.1 cm wide, L:W = 6.5-14, the base truncate-rounded to rounded-attenuate.

12. Foliage leaf blades 0.8-1.1 cm wide; Serra dos Órgãos, Rio de Janeiro. ... C. sclerophylla
12. Foliage leaf blades 0.35-0.5 (-0.7) cm wide; states of São Paulo or Minas Gerais/Espirito Santo.

13. Foliage leaves 10-13 per complement; foliage leaf blades with L:W = 6.5-11; foliage leaf sheaths glabrous to softly pubescent toward the apex; culm leaves abaxially glabrous; Serra do Caparaó on the border of Minas Gerais/Espirito Santo ..C. baculifera

13. Foliage leaves 19-24 per complement; foliage leaf blades with L:W = 11-14; foliage leaf sheaths pubescent-hispid between the nerves; culm leaves abaxially pubescent; Campos da Boraceia, São Paulo....................C. erecta

Key to the Species of Chusquea subg. Swallenochloa in Brazil
(based on vegetative and flowering specimens)

1. Foliage leaf sheaths deciduous from the lower nodes of the subsidiary branches (C. nudiramea Group).

2. Spikelets 6.9-9.1 mm long.
 3. Spikelets 1.5-3 mm wide, the palea overtopping the lemma; foliage leaf sheaths lightly mottled with green; subsidiary buds/branches in several more or less linear rows, subequal...C. juergensii
 3. Spikelets 1.3-1.5 mm wide, the palea and lemma subequal; foliage leaf sheaths uniform in color; subsidiary buds/branches in one row curving around the central bud, constellate, 2 more robust subsidiary buds/branches present..C. nudiramea

2. Spikelets 4.3-7.5 mm long.
 4. Spikelets 4.3-6.3 (-7.5) mm long, 0.9-1.4 mm wide, the palea and lemma subequal; synflorescences (1.5-) 2-4 cm long, narrow to open; foliage leaf blades (0.3-) 0.5-0.9 (-1.2) cm wide, L:W = (4-) 7.7-15; smaller subsidiary branches 15-40 per node...C. mimosa subsp. mimosa
 4. Spikelets (5.5-) 6-7.5 mm long, 1.1-1.6 mm wide, the palea and lemma subequal or more often the palea overtopping the lemma; synflorescences 1-3 cm long, narrow or only the lower branches and pedicels reflexed; foliage leaf blades (0.2-) 0.4-0.7 cm wide; L:W = 10.6-23.7; smaller subsidiary branches 45-80 per nodeC. mimosa subsp. australis

5. Glumes I and II minute, scale-like, < 1/20 the spikelet length.
 6. Spikelets 6.2-8.7 mm long; glumes III and IV abaxially finely pubescent; synflorescences 2-5 cm long ...C. baculifera
 6. Spikelets 4.3-4.9 mm long; glumes III and IV abaxially glabrous; synflorescences 1.5-2 cm long ...C. windischii

5. At least glume II developed, > 1/20 the spikelet length.
 7. Spikelets 7.7-6.7 mm long; synflorescences 4-6.5 cm longC. hatschbachii
 7. Spikelets 4.7-7.1 (-8.1) mm long; synflorescences 0.5-4 cm long.

 9. Spikelets 4.7-5.5 mm long; synflorescences 1-1.5 cm long; subsidiary branches 1.5-4 cm long, 30-60 per node, the central branch usually not developing; supranodal ridge obscure; culms 0.5-1 m tall..C. microphylla
 9. Spikelets 5.4-6.9 mm long; synflorescences 1-4 cm long; subsidiary branches 3-15 cm long, (12-) 20-45 per node, the central branch usually developing, robust; supranodal ridge prominent; culms 1-2 (-3.5) m tall............................C. heterophylla

10. Foliage leaf blades 0.8-1.1 cm wide..C. sclerophylla
10. Foliage leaf blades 0.06-0.4 cm wide.
 11. Foliage leaf blades 0.3-0.4 cm wide, L:W = 10-13; synflorescences 2-3 cm long; glume II < 1/15 the spikelet lengthC. riosaltensis
11. Foliage leaf blades 0.06-0.25 (-0.4) cm wide, L:W = (8.6-) 17-60; synflorescences 0.5-2 (-4) cm long; glume II ca. 1/10 the spikelet length.

12. Synflorescences 0.5-1 cm long; foliage leaf blades 0.06-0.15 cm wide, L:W = (25-) 33-60; subsidiary branches (8-) 18.5- 65 cm long, usually nodding, the shorter branches ascending to slightly arched; culms (2) 4-5 m tall..C. nutans

12. Synflorescences 1-2 (-4) cm long; foliage leaf blades 0.07-0.25 (-0.4) cm wide, L:W = (8.6-) 17-31; subsidiary branches (4-) 8-21 cm long, usually erect, sometimes slightly arching; culms (0.5-) 2-3 m tall..C. pinifolia

Chusquea hatschbachii L. G. Clark and A. Blong, sp. nov. TYPE: Brazil. Santa Catarina: Mun. Urubici, Morro da Igreja, alto, borda dos peraus, 1800 m, 16 Feb 1995 (fl), G. & M. Hatschbach & O. S. Ribas 61669 (holotype: MBM!; isotype: ISC!). Fig. 1.

Culmi 4-6 mm diam., 1-1.5 m alti. Folia culmorum 9-14 cm longa, primum persistentia, demum decidua; vaginae 6-9.5 cm longae, 1.7-6-plo longiores quam laminam, abaxialiter scabridae; laminae 1.5-4.6 cm longae, triangulares, abaxialiter et adaxialiter scabridae. Ramificatio intravaginalis; ramus centralis 22-24 cm longus, curvames sursum in angulis 25°-45°; rami subsidiarii cujusquisque nodi 6-12, 4-16 cm longi, plus minusve erecti. Folia
This species honors Dr. Gert Hatschbach of the Jardim Botanico Municipal, Herbario MBM, in Curitiba, Paraná, Brazil. Dr. Hatschbach's collections throughout Brazil, but particularly in the state of Paraná, have provided an important foundation for the study and conservation of Brazil's biodiversity. Dr. Hatschbach is a thorough collector and explores every corner of the sites he visits; his two collections of this species, the only ones known, exemplify this approach.

Chusquea hatschbachii is characterized by culm leaves with sheaths 1.7-6 times as long as the blade, with the base of the blade narrower than the sheath apex; a central branch that curves upwards and away from the main culm at a 25°-45° angle, with no recurving; sometimes rebranching, at least when flowering; 6-12 subsidiary branches per node, 4-16 cm long, more or less erect, some upward curving, often with limited rebranching. Foliate leaves 3-4 per complement; sheaths persistent, glabrous, nerves prominent; blades 3.3-6.6 cm long and 0.4-0.9 cm wide on vegetative branches, 3-5.8 cm long and 0.3-0.6 cm wide on reproductive branches, L:W = (4.4-) 6.5-12, apex subulate, base rounded to rounded-attenuate, margins antrorsely serrulate; pseudopetiole 0.5-1.5 mm long, distinct; outer ligule 0.1-0.5 mm long, glabrous, somewhat irregular; inner ligule 1.0-2.5 mm long, truncate to rounded, glabrous. Synflorescences 4.0-6.5 cm long, 1-2 cm wide, paniculate, narrow, base usually retained within the subtending sheath; rachis, branches, and pedicels angular, pubescent, often glaucous; rachis edges scabrous; branches 1-2.5 cm long, appressed; pedicels 2-5 mm long. Spikelets 7.7-8.7 mm long, more or less laterally compressed; glume I 0.2-0.6 mm long, < 1/25 the spikelet length, scalelike; glume II 0.6-2 mm long, variable but usually 1/10-1/3 of the spikelet length, variable but usually 1/10-1/3 of the spikelet length, rounded; glumes III and IV awned, 3-nerved; glume III 4.5-6 mm long, 2/3 the length of the spikelet, awn 1-1.5 mm long; glume VI 5-6.4 mm long, 3/4 the length of the spikelet, awn 1-2 mm long; fertile lemmas 7.1-8.5 mm long, including the awn, awn 0.8-1.2 mm long, 7-9-nerved; paleas 7-7.5 mm long, subequal to the fertile lemma, biaristulate, awn tips ca. 0.7 mm long, 4-nerved, 2-keeled, sulcate for the full length. Lodicules 3; the anterior pair ca. 1.5 mm long, ciliate, asymmetrical, the posterior one ca. 1 mm long, ciliate. Stamens 3; anthers 3-4 mm long, yellow. Fruit unknown.

This species resembles C. windischii, especially vegetatively, and is found in the same general locality. Hatschbach et al. 55355, the only known collection of this new species aside from the type, was originally identified as a vegetative collection of C. windischii. However, C. hatschbachii is found at higher elevations and its flowering structures...
are distinct from those of its putative sister species *C. windischii* (Table 1), with larger synflorescences and spikelets and awned bracts. *Chusquea hatschbachii* is known only from rocky outcrops at about 1800 m on the Morro da Igreja of the Serra Geral, Santa Catarina, Brazil. Additional specimen examined. BRAZIL. Santa Catarina: Mun. Urubici, Morro da Igreja, orla da matinha nebular, 1800 m, 8 Apr 1991, Hatschbach et al. 55355 (ISC, MBM).

ACKNOWLEDGMENTS

We thank Dr. Gert Hatschbach for making duplicates available for examination. Christa Adler and Christopher Tyrrell put the line drawings into final form for publication. Preparation of the manuscript was completed with support from NSF grant DEB-0515712 to L. G. Clark.

LITERATURE CITED

Table 1. Morphological comparison of *C. hatschbachii* and *C. windischii*

<table>
<thead>
<tr>
<th>Character</th>
<th>C. hatschbachii</th>
<th>C. windischii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culm height (m)</td>
<td>1-1.5</td>
<td>ca. 1</td>
</tr>
<tr>
<td>Culm leaf sheath: blade</td>
<td>1.7-6</td>
<td>1.5-2.8</td>
</tr>
<tr>
<td>Central branch curvature</td>
<td>more or less gently curved away from the main culm</td>
<td>strongly sinuous, sometimes nearly horizontal</td>
</tr>
<tr>
<td>Subsidiary branch length (cm)</td>
<td>4-16</td>
<td>4-11</td>
</tr>
<tr>
<td>Foliage leaf blade L:W (on vegetative branches)</td>
<td>(4.4-) 6.5-10</td>
<td>5.5-8.6</td>
</tr>
<tr>
<td>Synflorescence length (cm) width (cm)</td>
<td>4-6.5 1-2</td>
<td>1.5-2 ca. 05</td>
</tr>
<tr>
<td>Spikelet length (mm) and and width (mm)</td>
<td>7.7-8.7 1.5-2</td>
<td>4.3-4.9 1-1.2</td>
</tr>
<tr>
<td>Glume I length (mm) and proportion to spikelet</td>
<td>0.2-0.6 < 1/25</td>
<td>ca. 0.1 < 1/20</td>
</tr>
<tr>
<td>Glume II length (mm) and proportion to spikelet</td>
<td>0.6-2 1/15-1/3</td>
<td>0.1-0.2 < 1/20</td>
</tr>
<tr>
<td>Glume III apex and proportion to spikelet</td>
<td>awned 2/3</td>
<td>mucronate 2/3</td>
</tr>
<tr>
<td>Glume IV apex and proportion to spikelet</td>
<td>awned ca. 3/4</td>
<td>mucronate 2/3</td>
</tr>
<tr>
<td>Fertile lemma apex</td>
<td>awned</td>
<td>shortly mucronate</td>
</tr>
</tbody>
</table>
Flowering and Regeneration of Three Endemic Reed Bamboos of Western Ghats – *Ochlandra travancorica* Benth, *O. soderstromiana* Muktesh & Stephen and *O. spirostylis* Muktesh, Seetha. & Stephen

Seethalakshmi K. K., Jijeesh C. M., Beena V. B. and Raveendran V.P.
Kerala Forest Research Institute, Peechi, Thrissur, Kerala, India, 680653

ABSTRACT

Flowering of three endemic reed bamboos viz. *Ochlandra travancorica* Benth, *O. soderstromiana* Muktesh and Stephen and *O. spirostylis* Muktesh, Seetha. and Stephen was observed at Nanattupara, Chattupara, and Chattuparakudy respectively coming under Ranni Forest Division, Kerala during 1997-1998. The flowering and post flowering behaviour of the three species along with seed characters were observed. Abundant seed set was observed in all the species and vivipary was common. The flowered areas were revisited in 2007, nine years after seed set to observe the regeneration status of the species. The *O. travancorica* showed profuse regeneration and the largest clump width, number of culms per clump, internodal length and diameter. *O. spirostylis*, situated on either side of the river bank also showed good regeneration and culms with maximum height and internodes and it can be recommended as a species for riverbank stabilization programmes. *O. soderstromiana* showed poor regeneration as well as reduced clump growth. The biotic pressures of the locality such as grazing and extraction of immature culms has reduced the resource base. In order to prevent extinction of *O. soderstromiana* both in situ and ex situ conservation methods are to be initiated immediately.

INTRODUCTION

Reed bamboo (*Ochlandra* species) forests occur as primary and secondary formations and flourish in areas of high rainfall and impeded drainage. They form one of the most important long-fibre raw materials for the paper and pulp industry, mat and basket making, house construction, musical instruments like flutes etc. Degradation of forests due to fire, conversion of land to agricultural use and over-extraction is observed in many of the predominant reed bamboo areas. Sustainable management of reed bamboo areas is essential for conservation and enhancement of this vanishing asset (Basha, 1994). Ecologically, the positive effect of growing reed bamboos to prevent soil degradation is well established (Sujatha 1999; Sujatha *et al.*, 2002, 2003). The reed growing soils contain high diversity and density of soil fauna (Kumar *et al.*, 1999b).

Twelve species and one variety of reed bamboos are reported under the genus *Ochlandra* and many of them are rare and endangered (Kumar, 1995, Kumar *et al.*, 1999a & 2000). *Ochlandra travancorica* Benth, *O. soderstromiana* Muktesh and Stephen and *O. spirostylis* Muktesh, Seetha. and Stephen are the three endemic reed bamboos of Western Ghats (Figure 1). *O. travancorica* Benth ex Gamble is a large size reed bamboo about 6 m tall occurring widely as an undergrowth in the low level evergreen and semi-evergreen forests, especially in Thiruvananthapuram, Thenmala, Ranni and Forest Konni divisions of Kerala, India (Kumar, 1995). *O. soderstromiana* is a small straggling bamboo with culms erect up to 5 m with an internodal length of 40-50 cm, so far restricted in occurrence to Kallar valley estate, at an elevation of 1000m. *O. spirostylis* is a gregarious flowering, shrub-like bamboo, about 6 m tall, with an internodal length of 45 to 55 cm long, found on the river banks of Kallar at an elevation of 900 m near Chattuparakudy (Kumar *et al.*, 1999a).
Information on flowering and natural regeneration is the key factor for sustainable management of these species. There is only limited information on flowering and regeneration of reed bamboos (Seethalakshmi, 1993; Pandalai and Sankar, 2002). Flowering and seed set of *O. travancorica* Benth ex Gamble, *O. soderstromiana* and *O. spirostylis* was observed in Ranni Forest Division of Southern Kerala during 1997-98. During the field explorations in February 2007, the flowered areas were revisited to assess the regeneration status of these species. A comparison of the seed, clump and culm characteristics along with the status of regeneration, nine years after seed fall under natural conditions are provided in this paper.
MATERIALS AND METHODS

Flowering and Post Flowering Behavior
During 1997-1998, flowering of O. travancorica was observed at Nanattupara, O. soderstromiana at its type locality Chattupara, O. spirostylis at Chattuparakudy, all three places coming under Ranni division, Kerala. Flowered materials were collected to confirm taxonomic identification. The flowered clumps of previous years were observed to know the post flowering behaviour.

Seed Characteristics
Seeds were collected from three different clumps of each species and were thoroughly mixed to improve the homogeneity of the samples. Hundred seed weight and the moisture content (on fresh weight basis) of the seed lots were determined for each species and it was replicated ten times. From each seed lot, 25 seeds were collected at random to determine the individual seed characters like seed length, beak length and circumference.

Status of Regeneration
The flowered areas were revisited in February 2007 (nine years after seed set and dispersal) to assess the regeneration status of the three species. Three 20m x 20m sample plots were randomly demarcated for O. travancorica and O. soderstromiana to record total number of clumps. The number of clumps along a length of 50 m was recorded for O. spirostylis as it was found as a single row on both sides of Kallar River. The clump and culm characteristics like the clump width, number of culms per clump, height of culms, and number of internodes per culm, length and girth of fifth internode were determined for four clumps of each species at random. Only two clumps were present for O. soderstromiana to record these characters.

STATISTICAL ANALYSIS
Univariate ANOVA was used for analyzing seed and the seedling characteristics of the three species. Least Significant Difference (LSD) was used for pair wise comparison whenever necessary (Jayaraman, 2001). The mean and standard deviations were calculated wherever necessary.

RESULTS

Flowering and Post Flowering Behavior
Flowering started from August (1997) and seed fall was observed in February (1998), which continued till the end of April. Seeds exhibited vivipary in all the three species. Information obtained from local people and field observations revealed that flowering has set in during the previous year in these locations. Remnants of dried clumps after flowering and wildlings of approximately six months to one-year growth were observed in the vicinity (Figs 2 to 5). Scrutiny of flowering materials collected for taxonomic identification resulted in two new additions of O. soderstromiana and O. spirostylis to the bamboo flora (Kumar et al. 1999a). Residents at Chattuparakudy recollected the previous flowering of O. spirostylis occurring during 1982-83 indicating that flowering cycle is approximately 15 years. No such information could be collected for the other two species.

Seed Characteristics
Of the three species, O. travancorica seeds recorded a significantly higher dry weight (25.06 ±2.91 g) compared to other two species (Table 1). However, highest seed length (6.16 ±0.48 cm), beak length (5.77 ±0.66 cm) and moisture content (152.29%) were recorded in O. spirostylis. Meanwhile, the circumference in the middle of the seeds was the lowest in this species (8.03 ±0.65 cm). O. travancorica seeds recorded a higher circumference (9.99 ±0.97 cm) in the middle. Hundred seed weight was the maximum in the fresh seeds of O. travancorica (2.48 ±0.29 kg), whereas O. spirostylis (1.83±0.63) recorded the least. Analysis of variance revealed that all the seed characteristics except 100 seed weight (p=0.05) varied at one percent significant level among three species.

Status of Regeneration and Growth
About 20-25 clumps were counted in an area of 20 x 20 m for O. travancorica. Only
Figure 2. Flowered and dying clumps of *O. spirostylis*

Figure 3. Six-month old saplings of *O. spirostylis*

Figure 4. Flowered and dying clumps of *O. soderstromiana*

Figure 5. Six-month old saplings of *O. soderstromiana*
two clumps of *O. soderstromiana* were present which were located in the buttress of trees at a higher spot, which was not accessible to cattle while grazing (Figs 6 & 7). *O. spirostylis* showed 17-20 clumps in a length of 50 m.

More culms per clump were recorded in *O. travancorica* (197) followed by *O. spirostylis* (110). The growth of same age clump of *O. soderstromiana* was very poor (7). *O. spirostylis* showed maximum height (9.54 m) followed by *O. travancorica* (7.61 m) and *O. soderstromiana* (6 m). The spread of clumps (clump width), internode length, and diameter of internode were also highest in *O. travancorica* followed by *O. spirostylis* and *O. soderstromiana*. But *O. spirostylis* had more internodes when compared to the other two species (Table 2). The analysis of variance revealed significant variation in number of culms, clump width, culm height and number of internodes of the three species at five percent level.

DISCUSSION

Limited reports on flowering and regeneration of reed bamboos have been published on the common species *O. travancorica* (Kumar 1990 & 1995, Seethalakshmi 1993; Seethalakshmi and Kumar, 1998). Taxonomic identity of the flowering material collected during this investigation resulted in addition of two new species to the genus *Ochlandra* (Kumar et al., 1999a).

Good seed setting and vivipary were observed in all the three species. Generally, the seeds of *Ochlandra* are recalcitrant in nature.

<table>
<thead>
<tr>
<th>Species</th>
<th>O. travancorica</th>
<th>O. soderstromiana</th>
<th>O. spirostylis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed fresh weight (g)</td>
<td>25.06 ± 2.91<sup>a</sup></td>
<td>21.99 ± 2.41<sup>b</sup></td>
<td>18.84 ± 5.82<sup>b</sup></td>
</tr>
<tr>
<td>Seed length (cm)</td>
<td>5.92 ± 0.64<sup>a</sup></td>
<td>5.20 ± 0.41<sup>b</sup></td>
<td>6.16 ± 0.48<sup>a</sup></td>
</tr>
<tr>
<td>Beak length (cm)</td>
<td>5.03 ± 0.52<sup>c</sup></td>
<td>4.58 ± 0.43<sup>b</sup></td>
<td>5.77 ± 0.66<sup>a</sup></td>
</tr>
<tr>
<td>Circumference (cm)</td>
<td>9.99 ± 0.97<sup>a</sup></td>
<td>9.19 ± 0.68<sup>b</sup></td>
<td>8.03 ± 0.65<sup>c</sup></td>
</tr>
<tr>
<td>100 seed weight (kg)</td>
<td>2.48 ± 0.29<sup>a</sup></td>
<td>2.10 ± 0.23<sup>ab</sup></td>
<td>1.83 ± 0.63<sup>b</sup></td>
</tr>
<tr>
<td>Moisture content (%)</td>
<td>90.65 ± 19.23<sup>b</sup></td>
<td>120.76 ±12.76<sup>ab</sup></td>
<td>152.29 ± 46.04<sup>a</sup></td>
</tr>
</tbody>
</table>

Table 1. Seed characteristics of *O. travancorica*, *O. soderstromiana* and *O. spirostylis* (Mean value with standard deviation). The parameters with same letter as superscript in the same row are homogeneous

<table>
<thead>
<tr>
<th>Species</th>
<th>O. travancorica</th>
<th>O. soderstromiana</th>
<th>O. spirostylis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of culms per clump</td>
<td>197 ± 41.59<sup>a</sup></td>
<td>7.00 ± 5.66<sup>c</sup></td>
<td>110 ± 20.98<sup>b</sup></td>
</tr>
<tr>
<td>Clump width (m)</td>
<td>2.08 ± 0.23<sup>a</sup></td>
<td>0.60 ± 0.07<sup>c</sup></td>
<td>1.75 ± 0.17<sup>b</sup></td>
</tr>
<tr>
<td>Height of the culm (m)</td>
<td>7.61 ± 0.71<sup>a</sup></td>
<td>6.00 ± 0.64<sup>b</sup></td>
<td>9.54 ± 0.90<sup>c</sup></td>
</tr>
<tr>
<td>Diameter at fifth node (cm)</td>
<td>9.33 ± 2.00</td>
<td>6.95 ± 1.60</td>
<td>7.42 ± 1.14</td>
</tr>
<tr>
<td>Length of fifth internode (cm)</td>
<td>67.06 ± 13.56</td>
<td>52.63 ± 16.32</td>
<td>1.63 ± 6.51</td>
</tr>
<tr>
<td>Number of internodes</td>
<td>10.19 ± 2.26<sup>b</sup></td>
<td>8.25 ± 0.71<sup>c</sup></td>
<td>13.06 ± 1.69<sup>a</sup></td>
</tr>
</tbody>
</table>

Table 2. Clump and culm characteristics of *O. travancorica*, *O. soderstromiana* and *O. spirostylis* after nine years of flowering and seed set (Mean value with standard deviation). The parameters with same letter as superscript in the same row are homogeneous
Seeds of *O. travancorica* were higher in weight with lower moisture content. The average weight of the seeds of *O. travancorica*, *O. soderstromiana* and *O. spirostylis* was almost 15.9, 13.9 and 11.9 times more compared to *O. scriptoria* and 5.9, 5.2 and 4.44 times more compared to *O. ebractiata* respectively (Seethalakshmi, 1993). Length of the seeds in all three species was almost two times more compared to *O. scriptoria* (Koshy and Harikumar, 2001). The seeds of *O. spirostylis* recorded higher average moisture content (MC) of 152.29 percentage with the lowest weight of 18.84 g i.e. more moisture per unit weight of the seed. Generally, the higher moisture content at the maturity decreases the storage potential of the seeds (Schmidt, 2001). Hence, it can be predicted that *O. spirostylis* (MC 152 %) and *O. soderstromiana* (MC 120%) seeds have a shorter potential for storage compared to *O. travancorica* (MC 91%). The *O. travancorica* seeds contained comparatively lower moisture content per unit biomass.

Figure 6. Present status of regeneration of *O. spirostylis*

Figure 7. Present status of regeneration of *O. soderstromiana*
Considering its natural habitat and culm characteristics, *O. spirostylis* appears to be a good species for planting on the riverbanks with commercial uses such as construction and craft. From the local reports it is expected to flower around 2013 and seedling production could be possible. Although the difference between species was statistically significant in some of the growth parameters such as clump width, number of clumps, height of the culm and number of internodes the comparison is not meaningful until a species trial is conducted with proper replication.

There is a potential to develop the lesser-known reed bamboo species suitable for special habitats through in-depth study of their growth and productivity in multi-locations including difficult sites.

ACKNOWLEDGEMENTS

The authors acknowledge Dr. R. Gnanaharan, Director, and Dr. Jose Kallarackal, Programme Coordinator, Kerala Forest Research Institute, Peechi for providing facilities and encouragement, Indian Council of Forestry Research and Education, Dehra Dun for financial support and Dr. C. Sunanda for statistical analysis.

LITERATURE CITED

Jayaraman, K. A Handbook on Statistical Analysis in Forestry Research, Kerala Forest Research Institute, Peechi for providing facilities and encouragement, Indian Council of Forestry Research and Education, Dehra Dun for financial support and Dr. C. Sunanda for statistical analysis.

Kumar, M, Seethalakshmi, K.K. and Sequeria, S. Two new species of *Ochlandra* Thw. (Poaceae-Bambusoide) from Southern India. Rheedea. 9: 31-35. (1999a)

Kumar, M.G.S; Sujatha, M.P; Sankar, S. Population density and diversity of micro-arthropods and annelids in the reed growing (*Ochlandra travancorica*) soil of Vazhachal Reserve Forest, Southern Western Ghats of India. Journal of Tropical Forestry 15: 135-143. (1999b)

Schmidt, L. Guide to handling of Tropical and Subtropical Forest seed. DANIDA Forest Seed Centre. Denmark. (2001)

Effects of Culm Height Levels and Node Presence on Mechanical Properties and Fracture Modes of Gigantochloa scortechinii Strips Loaded in Shear Parallel to Grain

Shahril Anuar Bahari* and Mansur Ahmad
Faculty of Applied Sciences, University of Technology MARA, 40450 Shah Alam, Selangor, Malaysia

Effect of culm height levels and node presence on mechanical properties and fracture modes of Gigantochloa scortechinii strips loaded in shear parallel to grain were investigated at macroscopic and microscopic level. The specimens were taken from bottom, middle and top portions of bamboo culm. In each portion, specimens were taken from internodes and node parts. From the results, there was a significant increment of Maximum Shear Stress τ_{max} value in bottom to top portions. Presence of node greatly reduced the τ_{max} value of bamboo strips. From macroscopic observation, fracture modes of G. scortechinii loaded in shear parallel to grain were classified as Even Splitting (Mode I) and Uneven Splitting (Mode II). Mode I occurred in internodes, while Mode II in all parts with nodes. Microscopic observation showed that Mode I exhibited even splitting in parenchyma without any fracture in vascular bundles regions, while Mode II exhibited uneven splitting fracture in both regions. Generally, anatomical behaviour of G. scortechinii at different portions and parts of culms influence the different mechanical properties and fracture modes of this bamboo species loaded in shear parallel to grain.

Bamboo is probably the most useful raw material. Its versatility can be developed to overcome the problems of timber shortages and inadequate raw materials. The uses of bamboo are traditionally well established by peoples in the rural areas of many tropical countries. The bamboo used in such traditional ways frequently lack proper production techniques due to a lack of understanding of its characteristics.

Increased knowledge of its characteristics could further develop the uses of bamboo. Understanding of mechanical properties and fracture modes will enable reliable, durable and safe bamboo products especially for structural purposes. Therefore this study was carried out with the following objectives: (1) to determine the effects of culm height levels and node presence on mechanical properties of G. scortechinii strips loaded in shear parallel to grain, (2) to determine the effects of culm height levels and node presence on fracture modes of G. scortechinii strips loaded in shear parallel to grain at macroscopic level, (3) to determine the effects of culm height levels and node presence on fracture modes of G. scortechinii strips loaded in shear parallel to grain at microscopic level.

MATERIALS AND METHODS

Specimen preparation

Eight (8) culms of G. scortechinii, locally known as Semantan bamboo, were harvested from managed clumps in Felda Mempaga at Bentong, Pahang. The present study was confined to bamboo culms of three years old since the bamboos were found to be matured at this age (Kassim et al. 1992; Wahab et al. 1997). The bamboo culms were cut at about 30 cm above the ground based on previous study (Kassim 1999; Mohmod & Pham 2001). All culms are almost straight and homogeneous in term of physical appearance. Each culm was cut into three equal portions of 2 m length, representing the bottom, middle and top portions.

The culms were then soaked in 4% aqueous emulsion of boron for 24 hours for protection against borers and fungi. These culms were then air-dried for several weeks and moisture content MC was monitored until equilibrium. After the completion of the drying process, each portion was split into eight pieces by using a
Classical and analysis of fracture modes at macroscopic level

Fracture modes at macroscopic level of Semantan bamboo strips loaded in shear were investigated by observing the pattern of failure by naked eyes and low magnification microscope for each specimen tested. Failure modes were classified according to the appearance of fractured surface and manner in which the failure develops (Anonymous 2003). Actual views of each classified failure mode were captured at radial and tangential surface by using ordinary digital camera. A schematic model for each classified failure mode was sketched. Distribution of classified failure modes at different portions and parts was recorded. The discussions were based on the behaviour of the grains and cells structures in the different failure modes for each portion and part of Semantan bamboo culm.

Observation of fracture modes at microscopic level

Fracture modes at microscopic level of Semantan bamboo strips loaded in shear were further observed at cross section view in the extension of fracture modes at macroscopic level. The methods described by Ahmad (2000) and Hoadley (1990) were used as general guide in microscopic slide preparation. Specimens were cut into smaller pieces at middle section with failure zone left intact. Failure zones were submerged in water and placed under vacuum for 60 minutes. Water-saturated failure zones were sliced at cross section, radial and tangential view on microtome to produce sections with thickness of 60 µm. Each section was rinsed in distilled water, mounted on glass slide and covered with glass slip with a drop of glycerine. Slides were observed on light microscope for microscopic failures observation using Leica DMLS microscope and 4x objective lens. Images were captured using Leica DC300 digital camera and processed using Video Test Master Morphology software. The difference of microscopic failures behaviour between classified failure modes in Semantan bamboo was discussed. Special attention was given for failure behaviour in parenchyma and vascular bundles regions of Semantan bamboo strips loaded in shear parallel to grain.

Determination of mechanical properties

Shear parallel to the grain test was carried out based on standard methods of testing small clear specimens of timber, ASTM D 143-94 (Anonymous 2003). Loading manner of shearing test was at parallel to grain in longitudinal direction at radial surface. Length, width and thickness were 60, 20 and 5 mm respectively. Specimens were notched to produce failure on a 50 by 5 mm area at radial surface. One hundred and twenty (120) specimens were taken from internodes and nodes of bottom, middle and top portions. All specimens were placed in a conditioning chamber for about three weeks prior to testing, and MC was monitored until equilibrium (Temperature = 18°C and Relative Humidity = 55%). Strength test was conducted on a 100 kN universal testing machine with crosshead speed of 0.6 mm/min. Maximum Shear Stress τ_{max} was calculated and used in analysis of variance (ANOVA) and t-test analysis.
RESULTS AND DISCUSSION

Determination of mechanical properties

Figure 2 shows the mean Maximum Shear Stress τ_{max} values of Semantan bamboo strips in bottom to top portions for specimens with absence of node. τ_{max} value in bottom portion was 4.49 N/mm^2, middle was 6.52 N/mm^2 and top was 6.80 N/mm^2 and these values were significantly different from each other.

Figure 3 shows the mean τ_{max} values of Semantan bamboo strips in bottom to top portions for specimens with presence of node. τ_{max} value in bottom portion was 4.07 N/mm^2, middle was 4.08 N/mm^2 and top was 6.74 N/mm^2. τ_{max} values for specimens with presence of node in bottom and middle portions were not significantly different. However, τ_{max} values for internodes in top and other portions were significantly different.

The result was similar to Bahari et al. (2006), Lee et al. (1994) and Mohmod & Pham (2001). There was an increment of τ_{max} value for bamboo strips from lower to higher portions of bamboo culm due to the increasing amount of fibro-vascular bundles in the respective portions (Mohmod & Pham 2001). Fibres are important for the determination of strength behaviour (Espiloy 1985; Ho 1993; Liese 1998).

Figure 4 shows the comparison of mean τ_{max} values of Semantan bamboo strips with absence and presence of node. τ_{max} value for strips with absence of node was 5.94 N/mm^2 while τ_{max} value for strips with presence of node was 4.96 N/mm^2.

Classification and analysis of fracture modes at macroscopic level

Failure modes of Semantan bamboo loaded in shear were classified as Even Splitting (Mode I) and Uneven Splitting (Mode II). The modes were similar to failure modes of Betong bamboo strips documented by Bahari et al. (2006). Generally, the failure was generated at radial surface from upper to lower side of specimen caused by loading direction at notched section. Figure 5 shows the Mode I and II shear failure at front view.
failure. Mode I occurred in internodes of all portions. The “even splitting” behaviour of Mode I was due to the even grain direction at internodes. Mode II occurred in nodes of all portions. “Uneven splitting” behaviour of Mode II was caused by uneven grain directions in node.

Table 1 presents the distribution of shear failure modes at different portions and parts of Semantan bamboo. Mode I shear failure occurred in internodes of all portions, while Mode II in nodes of all portions.

Table 1. Distribution of Shear Failure Modes at Different Portions and Parts of Semantan Bamboo

<table>
<thead>
<tr>
<th>Portions</th>
<th>Bottom</th>
<th>Middle</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts</td>
<td>IN IN</td>
<td>N IN N</td>
<td>IN N</td>
</tr>
<tr>
<td>Shear</td>
<td>MI MI</td>
<td>MI MI</td>
<td>MI MI</td>
</tr>
<tr>
<td>Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: IN = Internodes, N = Node, MI = Mode I, MII = Mode II

Analysis of τ_{max} value for Semantan bamboo strips in Figure 4 can be used in analyzing the fracture modes at macroscopic level. Since Mode I and II were collected from internodes and node parts in bottom to top portions, the similar discussion can be made for both modes based on this result. The orientation of cells and the properties of fibro vascular bundles play an important role for the strength behaviour of bamboo strips. Internodal parts show axial orientation of cells and greatest fibre length compared to node, and fibres in internodes are oriented uniformly and parallel to each other (Liese 1998; Sulthoni 1989).

Liese (1998) stated that the anatomical structure of most fibres is characterized by thick lamellate secondary walls. This influences the strength properties and provides protection of vascular bundles compared to parenchyma where failure initiated. According to Ho (1993), fibres reacted as mechanical support rather than parenchyma that reacted as food and water storage. The culm tissue comprises about 50% parenchyma which induces initial failure in the parenchyma region (Liese 1998). This reason had influenced the behaviour of “even splitting” failure and significantly higher τ_{max} value for Mode I shear failure compared to Mode II in Semantan bamboo.

Mode II shear failure (occurred in nodes of all portions) exhibited uneven splitting failure in both parenchyma and vascular bundles region. This result could be related to the statements of Liese (1998) and Sulthoni (1989). According to Liese (1998), the main vascular bundles in nodes are swollen, and branching vascular anastomoses develop intensively. Many small vascular bundles turn horizontally and twist repeatedly, as illustrated by Liese (1998). Aside from vascular bundles and fibres
behaviour, Sulthoni (1989) stated that many vessels crossed the fibres to reach the diaphragm in nodes. These reasons are believed to influence the behaviour of “uneven splitting” failure and significantly lower τ_{max} value of Mode II shear failure compared to Mode I in Semantan bamboo.

ACKNOWLEDGEMENTS

The financial support from Ministry of Science, Technology and Innovation (MOSTI) Malaysia and Institute of Research, Development and Commercialization (IRDC), University of Technology MARA (UiTM) to carry out this study is gratefully acknowledged. Special thanks are also due to Professor Dr. Walter Liese from Institute of Wood Biology, University of Hamburg, Germany, for providing the valuable input and information on anatomical properties of bamboo during this study.

LITERATURE CITED

A. Sulthoni, Bamboo: physical properties, testing methods and means of preservation, Proceeding of a Workshop on Design and Manufacture of Bamboo and Rattan Furniture, Asia Pacific Forest Industry Development Group, pp. 4-1 - 4-13, 1989.

S. A. Bahari, Modes of failure and microscopic failures of betong bamboo strips loaded in shear, bending, tension and compression, MSc Thesis, Universiti Teknologi MARA, Malaysia, 2005.

Y. F. Ho, Scanning electron microscopy of bamboo, Buletin Buluh (Bamboo), Vol. 2 No. 2, Forest Research Institute Malaysia (FRIM) and Malaysian Timber Industry Board (MTIB), Malaysia, pp. 8 - 9, 1993.

Manuscripts and other non-subscription communications regarding Bamboo Science and Culture should be addressed to:

Johan Gielis
Editor-in-Chief
Bamboo Science and Culture
Nottebohmstraat 8
B-2018 Antwerpen
Belgium

Tel. 32 496 54 88 86
Email: johan.gielis@mac.com

Manuscripts should be submitted in clear and concise English with an abstract in English and second abstract in the language of the geographic area from which the research originates or deals. Other languages will be considered by special prior arrangement with the editor. Reprints are not provided except by special arrangement. All manuscripts must be submitted electronically.

Detailed Instructions for Authors are available on the WWW at:
http://www.bamboo.org/ABS/Journal/Archive/ABSJournalAuthorGuide.html. All back issues of the Journal are available online at:

Please make sure that ALL authors have read and agreed to the contents of the paper.

Bamboo Science and Culture is the official journal of the American Bamboo Society. It is the continuation of The Journal of the American Bamboo Society, a journal with a long tradition of publishing scientific and cultural articles on all aspects of bamboo.

Bamboo Science and Culture is the premier journal for bamboo systematics, ecology, anthropology, archaeology, geography, anatomy, history, physiology, agriculture, pathology, morphology and any other scholarly works dealing directly with bamboo.

Bamboo Science and Culture is a peer reviewed journal of the highest caliber. It is global in scope. Articles are generally published in English but allowances can be made for other languages indigenous to the subject area of the article. Abstracts in the language of the area dealt with are generally provided.

Bamboo Science and Culture is published annually and continues a 25 year tradition of serial publication. Plans are underway to move to two issues per year as soon as a sufficient number of manuscripts are available. Current total distribution is nearly 2000 and climbing. The journal is in many libraries and appears on several indexes around the world.

Bamboo Science and Culture is distributed on time and authors are treated with the highest degree of professionalism. Reviews are carried out in a timely manner and fully galley proofs are provided prior to publication. There are no page charges. Photos and graphics are reproduced in glossy high resolution black and white, or in color with an added charge.

You should publish in:

Bamboo Science and Culture

The paper in this journal meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper)
Contents

Occurrence of *Aulonemia deflexa* (Poaceae: Bambusoideae) in Brazil1
Pedro L. Viana, Nara F. O. Mota and Tarciso S. Filgueiras

Molecular phylogeny of Asian woody bamboos: Review for the Flora of China5
Chris M. A. Stapleton, Gráinne Ní Chonghaile and Trevor R. Hodkinson

A New Species of *Chusquea* sect. *Swallenochloa* (Poaceae: Bambusoideae: Bambuseae) from Brazil ..26
Lynn G. Clark and Andrea Blong

Flowering and Regeneration of Three Endemic Reed Bamboos of Western Ghats –
Ochlandra travancorica Benth, *O. soderstromiana* Mukthesh & Stephen and
O. spirostylis Mukthesh, Seetha. & Stephen ...32
Seethalakshmi K. K., Jijeesh C. M, Beena V. B and Raveendran V.P.

Effects of Culm Height Levels and Node Presence on Mechanical Properties and
Fracture Modes of *Gigantochloa scortechinii* Strips Loaded in Shear Parallel to Grain.......40
Shahril Anuar Bahari and Mansur Ahmad

Johan Gielis
Editor-in-Chief
Bamboo Science and Culture
journal@americanbamboo.org